
Improving the Usability of OCL as an
Ad-hoc Model Querying Language

Harald Störrle

Department of Applied Mathematics and Computer Science
Technical University of Denmark, Matematiktorvet, 2800 Lyngby, Denmark

hsto@dtu.dk

Abstract. The OCL is often perceived as difficult to learn and use. In
previous research, we have defined experimental query languages exhibit-
ing higher levels of usability than OCL. However, none of these alterna-
tives can rival OCL in terms of adoption and support. In an attempt
to leverage the lessons learned from our research and make it accessible
to the OCL community, we propose the OCL Query API (OQAPI), a
library of query-predicates to improve the user-friendliness of OCL for
ad-hoc querying. The usability of OQAPI is studied using controlled
experiments. We find considerable evidence to support our claim, that
OQAPI facilitates user querying using OCL.

1 Introduction

Interactive querying by modelers is an important task in many model-based
practices (cf. [7]). Where the full-text search and predefined queries provided
by many tools are not expressive and flexible enough, the Object Constraint
Language (OCL, [14]) is an obvious choice as a model query language. However,
OCL has a reputation as being “hard”, and we have observed many a modeler
struggle with OCL, both in industry and academia. This has even been quoted as
the main obstacle to adopting OCL in industry: “OCL has not yet been broadly
adopted by practitioners because they find it difficult to define OCL expressions”
(cf. [5, p. 665]).

In previous research, we had hypothesized that there might be at least two dif-
ferent factors contributing to the usability of model query languages (see Fig. 1).
First, we hypothesized that there is a “language gap” between a textual model
query language and a visual modeling language; providing a visual query lan-
guage instead of a textual one (such as OCL) would avoid this gap, and con-
tribute to usability. Thus we have defined the Visual Model Query Language
(VMQL, see [19]), and could indeed prove that it is easier to use than OCL.

Evaluating the participant feedback from this initial study revealed, however,
that there is a second factor, namely, a “semantic” or “concept gap” between the
concepts modelers use and the concepts provided by a low-level query language
such as OCL. Since, inadvertently, VMQL closed both of these gaps at the same
time, we could not identify the respective contributions of these two factors.



Thus, we have defined the Model Query and Constraint Language (MOCQL,
[20]), a language that shares the high level concepts of VMQL, but not the
visual syntax. Again, we could demonstrate higher usability than OCL—but
also higher usability than VMQL. This leads to two predictions. First, it suggests
that closing the concept gap has (much) more impact than closing the language
gap. If this is correct, the Visual OCL [4] would exhibit essentially the same level
of usability than OCL. Second, equipping OCL with similar query concepts as
defined in VMQL and MOQCL would improve the usability of OCL. In this
paper, we are testing the second prediction by introducing the OCL Query API
(OQPAI), a library of OCL querying predicates emulating the query concepts
offered by VMQL and MOQCL, and test its usability.

Query
Concepts

high

low

textual visual
Notation Type

vOCLOCL

la
ng

ua
ge

g
a

p
concept g a p

OCL+OQAPI
MOCQL VMQL

Fig. 1. Two independent factors contribute to the usability of a model querying lan-
guage, the concrete syntax and conceptual abstraction level.

2 The OCL Query API

Based on previous research on the model query languages [17–20], we have iden-
tified the most important model query elements for ad-hoc domain model query-
ing. We have translated them into OCL predicates, and organized them into con-
cepts appealing to end user modelers, resulting in the OCL Query API (OQAPI).

In the following, we discuss a few design issues of OQAPI, explaining its ma-
jor predicates and general style. Due to lack of space, however, this explanation
is not complete. Note also, that there is currently no complete implementation
of OQAPI. An overview over its predicates is found in Table 1.

2.1 Meta-class selection

Doubtlessly the most frequent query is looking for a certain element by its name
and/or type. For instance, modelers would look for “the class called ’x”’ or “all
methods whose name starts with ’set”’ (i.e., all setters). Since these operations



are so frequent, OQAPI provides specific support for them. As a concrete exam-
ple, consider finding all classes in a model that have the name “Address”. Using
OQAPI this query might be expressed as query (1a), while bare OCL would
require something like (1b).
(1a) classes() -> named("Address")

(1b) Class.allInstances() -> select(c | c.name == "Address")

Unfortunately, solution (1b) works only in some contexts, but not, say, for
selecting Actions of a given name, since allInstances is only defined for
Classifier, and does not cover sub-meta-classes. So, action.allInstances()
is not proper OCL code, and even if it were, no instances of subclasses of Action
would be found. Since there are no type variables in OCL, we cannot implement
a generic lookup function:
def lookup(<T> <: Element) : Set(<T>)= -- not possible in OCL!

model->collect(x|x.isOclTypeOf(<T>)).

Thus, OQAPI provides explicit lookup-functions for all (!) relevant meta classes,
i.e., classes(), actions(), useCases, and so on. It also provides matching
filters, i.e., is class(), is action(), is useCases etc.

2.2 Attribute value selection

In (1b), we have used select for selecting by attribute values, but there is also
the OCL function collect that allows more compositional selection: OCL allows
to use collect(a=v) for searching for model elements with a specific value v in
a given attribute a (see [14, p. 32]). Of course, such clauses can be cascaded. For
instance, query (2) below looks for abstract classes called “Address”.
(2) classes()->collect(name="Address")->collect(isAbstract=true)

For the most frequent meta-attributes, specific selection predicates are pro-
vided, in particular named. Besides exact matching, however, wild-card matching
is frequently called for. Currently, there is no such feature in OCL. Using the
substring functions of the OCL standard library, it is easy to implement a
named like function for the simplest cases with only one ’*’ wild card.
match(s:String, pattern:String): Boolean =

let star = pattern.indexOf("*")

let head = pattern.substring(0,star-1)

let tail = pattern.substring(star+1,l-1)

in

match_tl(s, tail) && match_hd(s, head)

match_tl(s, pattern) =

pattern =

s.substring(s.length()-pattern.length(),s.length()-1)

match_hd(s, pattern) =

pattern =

s.substring(0,pattern.length()-1)

Clearly, anything up to and including linguistic and phonetic search would be
possible, too.



2.3 Association

One of the properties of OCL is that it reflects immediately the structure of
the underlying meta-model. This can be understood as a feature (degree of
control), but also as a bug (lack of abstraction). Since the UML meta-model
encodes many relationships that are quite clear and intuitive to modelers in un-
obvious and complicated ways, we think the latter point of view is more accurate.
This is probably best demonstrated using association (but applies similarly to
generalization, and containment). Consider first a case where we want to find the
actors involved in a given use case named “edit address data”. Using OQAPI,
we can issue the following query.

(3) actors()->associated_to()->(is_useCase()

&& named_like("edit address data") )

OQAPI offers the simple is associated to predicate to replace the cum-
bersome navigation made necessary by the complex encoding in the UML meta-
model. In bare OCL, simply checking that a given Classifier C1 is associated to
another given Classifier C2 makes us navigate to the respective ownedMembers

of C1 and C2, then find an Association A that refers ownedMembers of C1 and C2
by its memberEnd meta-attribute. In OCL, this reads as follows.

let End1 = C1.ownedMember

in let End2 = C2.ownedMember

in let Ass = Association.allInstances()

in collect(a | Ass->includes(a)

and a.memberEnd->intersects(End1)

and a.memberEnd->intersects(End2) )->notEmpty()

The clear and simple concept of an association is lost in this expression.
OQAPI, on the other hand, provides the function associated hiding all the
UML complexity behind an intuitive name, and the query simply becomes
E1.is associated to().contains(E2).

2.4 Other relationships

Another relationships that is treated in a similar way is containment. While the
UML meta-model encodes it by the meta-attribute ownedMember, OQAPI offers
the functions owns and is part of. Likewise for generalization: the UML meta-
model encodes this relationship as a part of the specialization that points to the
generalization, OQPAI offers the terms specializes and is generalized by

and so on. Observe that OQPAI offers both the active and the passive form,
both for generalizes and specializes, such as to not impose stylistic restrictions
on the modeler. Likewise, overloading is used to define both set and element-
based variants of predicates.

As a third example, consider a process model expressed by activity diagrams.
Suppose, we are looking for Activities that contain Actions unconnected to the
initial node. Using OQAPI, this could be expressed by query (4).



Table 1. Overview of the OQAPI functions. INTV refers to an interval specification

Concept Main Predicate Syntactic Sugar Predicates

type selection classes(),... is class(),...

association associates to() associated to(), associated to(INTV), ...

element name named() named like()

containment owns() is owned by(), contains(), is part of(),
owns(INTV), ...

generalization generalizes() specializes(), is generalized by(),
inherits(), owns(INTV), ...

control flow comes after() comes before(), precedes(), succeeds(),
is preceded by(), precedes(INTV), ...

inclusion includes() is included by(), is included by(INTV), ...

extension extends() is extended by(), is extended by(INTV), ...

(4) actions()->preceded_by(transitively)->contains()->is_initialNode()

This example also illustrates another aspect: namely these concepts are often
intuitively understood as being transitive, while writing recursive queries is a
major challenge to many modelers.

Also, notice the (optional) parameter of this predicate: It specifies the length
of the path between the nodes in the precedence-relationship. If this parameter
is omitted, a distance of one is assumed, i.e., direct precedence. Other values
include minimal and maximal distances (see [21] for more details).

3 Usability Evaluation

In a series of controlled experiments, we analyzed the performance of modelers
when using different model query languages. In this paper, we report only on
the results obtained for two model query languages, the OCL and OCL with
OQAPI. Results on other model query languages are reported in [20] and [19].

Study Design We created sets of twelve queries (“stimuli”) in OCL with and
without OQAPI, and a list of 32 plain English descriptions of queries (“re-
sponses”). In the first task, subjects were given ten stimuli and asked to find
matching responses, with zero to four matches being applicable to each stimu-
lus. In the second task, subjects were asked given twelve groups of one stimulus
and three alternative responses, one of which was correct. In the third task, sub-
jects were given four responses and asked to create the correct stimulus. In the
fourth task, subjects were asked to asses the readability and writability of the
query languages, and the subjective effort and confidence.

The languages in the experiment were named as A to D.1 The instructions
were given in print, after completing one task, subjects were instructed not to

1 Recall, that these experiments included not just OCL and OCL+OQAPI.



Table 2. Observations made in the experiments: The significance is computed by a
two-tailed t-test for two samples with unequal variance. The effect size level is given
in Cohen’s terminology. The different n reflect the mortality in the experiment for the
reading tasks; for the writing tasks, no analyzable results were obtained under the OCL
condition.

OCL OQAPI Improvement Significance Effect size
(n=18) (n=25) [%] (p-Value, level) (Cohen’s d, level)

Understandability

µ 3.76 4.78 27.13% 0.097 . -0.559 M
σ 1.80 1.84 2.22%

Writability

µ 5.53
σ 2.53

Effort

µ 8.75 6.25 -28.57% 0.015 * 0.918 L
σ 1.78 3.23 81.69%

Confidence

µ 3.33 5.23 57.14% 0.013 * -0.881 L
σ 1.55 2.50 61.29%

turn back to previous tasks. Subjects were asked to provide additional comments
on the questionnaires and in unstructured follow-up interviews.

Observations Probably the most striking observation is that some subjects
refused to work on tasks involving the OCL treatment; thus the substantially
smaller number of participants for the OCL condition, in particular for the writ-
ing task, see Table 2. One of the participants remarked “after [the other] lan-
guages, it’s hard to get yourself to work on [OCL]. [It] is rather, well, relatively
complicated, I kept thinking, jeez, why does it have to be quite as complicated.
[The others] are quite easy in comparison, these are easy to understand.” Other
participant made similar remarks, such as: “All in all it was ok...I found OCL
horrible” or “[the other language] was ok, but [OCL] is difficult to understand,
you have to follow the algorithm. That’s ok, it works, but it’s more effort.” Prob-
ably the most poignant comment was “[OCL] was really pissing me off ”.

Coming to the objective measures (see Table 2), we see that subjects perform
better when using OQAPI: subjects score almost 30% better when using OQAPI
as compared to using bare OCL. At the same time, the reported effort (a measure
for cognitive load) goes down almost 30%. Most strikingly, the confidence in the
correctness of the result increases by almost 60%. Surprisingly, we also see that
in the “OQAPI” condition, variances generally increase as when compared to
the “bare OCL” condition. For understandability scores, this is only a slight
increase that may not be significant. However, for confidence, we see an increase
of over 60%, and for effort, we even see an increase of over 80%.



Interpretation The observations of the different performance scores and load
measures are consistent, as are the impressions from the post experiment inter-
views. The differences between the two treatments are statistically significant,
and demonstrate a medium to large effect size of using OQAPI, in the conven-
tional terminology of Cohen. Together, this implies strong support for our initial
hypothesis.

We interpret the massive increase in variance as a sign that there is a strong
difference between individuals in the capacity to take advantage of the support
offered by OQAPI. In other words, on average, everybody benefits from using
OQAPI, but it is easier to use for some people than for others.

Threats to validity While it is always desirable to have larger numbers of data
points to achieve better p-values, the effect size of the phenomenon studied here
is such that even the modest n we provide in our study is sufficient to achieve
statistically significant results. A larger threat to validity is the relatively small
number of queries sampled in our evaluation. Moreover, we cannot claim that
they are representative with any degree of certainty. Clearly, this would require
a generally accepted body of sample queries, or a benchmark, both of which are
not present in the case of OCL. In fact, as we have remarked earlier, there does
not seem to be a single OCL library or API that is published.

Probably the most significant threat to validity is the high degree of mortality
in this study, that is, the large number of subjects that completed the procedure
only partially as described as the beginning of Section 3 above: for the writing
task, mortality was 100%. However, in itself this is testament to the very low
degree of usability that bare OCL provides, as compared to using OQAPI.

4 Related Work

Many model query languages have been defined beyond those discussed in this
paper, the first being Constraint Diagrams [10], Query Models, and Join Point
Designation Diagrams [15, 16]. In the area of business process modeling, there
have been many new proposals in the last decade, e.g., the BPQL [11], BP-QL
[3], BPMN-VQL [6], BQL [9], and BPMN-Q [2]. To our knowledge, none of these
have been evaluated with a view to usability.

In contrast to the general interest in defining new query languages, there
seems to be no interest in improving OCL by providing query libraries: Despite
our best effort, we could not find any published libraries of OCL functions, or
definitions of APIs, for any purpose. We have contacted three leading experts
from the OCL community who confirmed this observation. Chimiak [5] claims to
have defined 50 libraries with 4.5kLOC combined, but these are not published.

The OCL Standard library ??defined where?? defines only low level functions
and operations on container types. The UML standard [13] does define some
predicates that appear in OQAPI, but defines them in an unsystematic way and
scattered over the whole UML standard document. The QVT standard [12] men-
tions a UmlUtilities library with operations such as getAllAbstractBaseActors



(p. 70) and getAllDerivedClasses (p. 72) but there is no reference to or listing
of the library as such. QVT also defines a Standard Library with some useful
functions (see [12, pp. 107]) rather similar to those included in the UML. Again,
they are not presented as coherent API and suffer from the same shortcomings
found in the function definitions of the UML standard.

5 Relevance of OQAPI

Since OCL has existed since almost twenty years now without any libraries pub-
lished for it, we think it is reasonable to fundamentally question the relevance
of predicate libraries such as OQAPI: if nobody needed them so far, why now?
First of all, APIs are obviously in wide spread use in programming and enjoy
great popularity, so it is intuitive to us to assume that OCL users would ben-
efit from similar facilities. In fact, Chimiak [5] has argued for the extension of
OCL to better support the use of libraries like OQAPI, too, highlighting reuse,
modularity, and separation of concerns as the main benefits of such libraries.

Secondly, some people argue that usability is not a major issue, since OCL
is supposed to be used only by experts. However, this is not the position of the
OMG, which declare usability a major concern: “The disadvantage of traditional
formal languages is that they are usable to persons with a strong mathematical
background, but difficult for the average business or system modeler to use. OCL
has been developed to fill this gap. It is a formal language that remains easy
to read and write. It has been developed as a business modeling language [...]”
(cf. [14, p. 5]).

Thirdly, it could be argued that the comparison of OCL with and without
OQAPI is unfair in a sense, since OCL is primarily a model constraint language
targeted at expert modelers. Indeed, some seem to believe that OCL was never
intended as a model query language, e.g., “OCL was originally designed specif-
ically for expressing constraints about a UML model” (cf. [1, p. 91]) and “OCL
was not originally designed to be a query language” (cf. [1, p. 102]). However,
the OCL standard itself makes it quite clear that OCL has indeed been created
with with both constraining and querying models in mind: “[OCL] expressions
typically specify invariant conditions [...] or queries over objects described in a
model.” (cf. [14, p. 5]).

Finally, and rather ironically, more evidence for the relevance of OQPAI is
provided by the UML and QVT standards themselves: when inspecting these
documents closely, we found a sizable number of instances where auxiliary func-
tions are defined that perform a part or a special case of an OQAPI function
(see Table 3). In some cases, these functions were defined repeatedly, sometimes
under different names.

6 Discussion

In previous research, we created several model query languages, each of which
provided higher usability than OCL. None of these, however, is a practical alter-



Table 3. OCL query functions defined in UML (top, [13]) and QVT (bottom, [12]).

Classifier :: inherit : Set(NamedElement) 7→ Set(NamedElement) p. 50
Classifier :: parents : () 7→ Set(Classifier) p. 53
Classifier :: allParents : () 7→ Set(Classifier) p. 54
Classifier :: allFeatures : () 7→ Set(Feature) p. 54

Element :: allOwnedElements : () 7→ Set(Element) p. 64
StateMachine :: ancestor : State× State 7→ Boolean p. 565

Transition :: containingStateMachine : () 7→ StateMachine p. 573
UseCase :: allIncludedUseCases : () 7→ Set(UseCase) p. 597
Profile :: allOwningPackages : () 7→ Set(Package) p. 664

Element :: subobjects : () 7→ Set(Element) p. 107
Element :: allSubobjects : () 7→ Set(Element) p. 107
Element :: subobjectsOfType : OclType 7→ Set(Element) p. 107
Element :: subobjectsOfKind : OclType 7→ Set(Element) p. 107

Model :: objects : () 7→ Set(Element) p. 108
Model :: objectsOfType : OclType 7→ Set(Element) p. 109

native to OCL, due to the lack of supportive materials, mature tool implemen-
tations, existing knowledge base and so on. In this paper, we apply the lessons
learned from our previous work to defining the OCL Query Library (OQAPI).
A conservative extension to OCL such as this does not share the weaknesses of
our previous approaches: it is easy to deploy wherever OCL is already in use.
Thus, OQPAI trades reduced usability for extended usage scenarios.

[5] has clearly identified the need for OCL libraries. Still, however, it seems
that no such libraries have been published, ever: none of the OCL experts we have
consulted was aware of any such library. So, OQAPI is a first step to addressing
a practical need, and our evaluation demonstrates the benefit of using OQAPI
in an empirical way. En passant, it provides evidence to the common perception
that OCL is difficult to use.

References


