
Quality Assurance of Textual Models within
Eclipse using OCL and Model Transformations

Thorsten Arendt, Gabriele Taentzer, Alexander Weber

Philipps-Universität Marburg, Germany
{arendt,taentzer,weber87}@informatik.uni-marburg.de

Abstract. Modern software development processes often use domain-
specific modeling languages (DSMLs) combined with custom code gen-
erators and/or interpreters. Especially textual DSMLs as provided by
Eclipse Xtext are becoming more and more popular. As a consequence,
software quality assurance frequently leads back to quality assurance of
the involved textual models. Here, various quality aspects have to be
considered highly depending on the modeling purpose and domain. In
this paper, we present a quality assurance tool set for textual models in
Eclipse using several interrelated components like Xtext, EMF Refactor,
Henshin and the OCL tools which are all based on the Eclipse Modeling
Framework (EMF). The practicability and flexibility of this tool set are
demonstrated by the design and implementation of a case study that is
based on a textual modeling language for simple web applications named
SWM (Simple Web Modeling Language).

Keywords: model-based development, textual modeling, quality assurance

1 Introduction

The use of models in modern software development processes is becoming more
and more popular. Model-based software development (MBSD) lifts software
models to be the primary artifacts in the software development process. This
is especially true in model-driven software development (MDSD) where mod-
els are finally used for code generation purposes. Moreover, the use of (often
textual) domain-specific modeling languages (DSMLs) is a promising trend in
modern software development processes to overcome the drawbacks concerned
with the universality and the broad scope of general-purpose languages like the
Unified Modeling Language (UML) [18]. Such a DSML can help to bridge the
gap between a domain experts view and the implementation.

Often, a DSML comes along with a code generator and/or interpreter to
provide functionality that should be hidden from the domain expert. In the
generator case, high code quality can be reached only if the quality of input
models is already high. Typical quality assurance techniques considering the
model syntax are model metrics, model smells, and model refactorings. In [2],
we present the integration of these techniques in a predefined quality assurance
process that can be adapted to specific project needs.

2

This paper contributes a flexible quality assurance tool set for textual
models supporting quality assurance techniques like model metrics, smells, and
refactorings integrated in textual model editors within the Eclipse IDE [7]. This
set integrates the following tools which are all build atop the Eclipse Model-
ing Framework (EMF) [20, 8], a widely used open source technology used in
MBSD: Xtext [22] for providing the language infrastructure, EMF Refactor [4,
9] for providing model quality assurance tooling, query languages like the Object
Constraint Language (OCL/MDT) [17, 15, 21] for specifying quality assurance
techniques, and the model transformation language Henshin [1, 13] for speci-
fying refactorings. Here, EMF Refactor’s code generation facilities provide the
designer to concentrate on the essential specification parts only.

To demonstrate the practicability and flexibility of this tool set we present a
case study for quality assurance of textual models. As example language we take
a DSML called Simple Web Model (SWM) for defining a specific kind of web
applications in a platform-independent way1. In the case study, we concentrate
on quality aspect completeness, i.e., we analyze whether SWM models are ready
for code generation and improve model parts using domain-specific refactorings.
The case study shows that Eclipse is particularly valuable for implementing
model quality assurance tools. On the one hand, the plugin technology provides
a flexible choice of concrete specification languages. On the other hand, the use
of the abstract syntax (provided by EMF) for implementing quality assurance
techniques provides a flexible use for visual and textual models in Eclipse.

The paper is structured as follows: In Section 2, we reflect the used model
quality assurance process. Section 3 presents the textual SWM language and an
example SWM instance model being used in Section 4 to discuss and present
techniques and tool support for quality assurance of SWM models. Finally, we
conclude with related work in Section 5 and a summary in Section 6.

2 Model quality assurance

The increasing use of model-based or model-driven software development pro-
cesses induces the need for high-quality software models. In [2], we propose a
model quality assurance process that consists of two sub-processes: a process for
the specification of project-specific model quality assurance techniques, and a
process for applying them on concrete software models during a MBSD process
(see right-hand side of Figure 1). For a rough model overview (for example, dur-
ing a model review), a report on model metrics might be helpful. Furthermore,
a model can be checked against the existence (respectively absence) of specified
model smells. Each model smell found has to be interpreted in order to evalu-
ate whether it should be eliminated by a suitable model modification (either by
a manual model change or a refactoring). This check-improve cycle should be
performed as long as needed to get a reasonable model quality.

In our approach, we define a process for specifying new quality assurance
techniques as shown in the left-hand side of Figure 1. After having identified the

1 Several variations of SWM are used in literature, for example in [6].

3

intended modeling purpose the most important quality goals are selected. Here,
we have to consider several conditions influencing the selection of significant
quality aspects being the most important ones for modeling in a specific software
project. The selection of significant quality aspects depends on the modeling
purpose. Since modeling purposes are quite different and vary in several software
projects, a quality aspect that is very important in one software project might
be less important in other ones.

Fig. 1. A structured model-quality assurance process

In the next step, static syntax checks for these quality aspects are defined.
This is done by formulating questions that should lead to so-called model smells
hinting to model parts that might violate a specific model quality aspect. Some of
these answers can be based on metrics. Other questions may be better answered
by considering specific patterns which can be formulated on the abstract syntax
of the model. A specified smell serves as precondition of at least one model
refactoring that can be used to restructure models in order to improve model
quality aspects but appreciably do not influence the semantics of the model.

3 SWM: simple web modeling language

In the case study, we assume the following scenario (taken from [6]): A soft-
ware development company is repeatedly building simple web applications be-
ing mostly used to populate and manage persistent data in a database. Here, a
typical three-layered architecture following the Model-View-Controller (MVC)
pattern [12] is used. As implementation technologies, a relational database for
persisting the data as well as plain Java classes for retrieving and modifying the
data are employed for building the model layer. The company decided to de-
velop its own textual DSML called Simple Web Modeling Language (SWM) for
defining their specific kind of web applications in a platform-independent way.
Based on SWM instances, platform-specific models following the MVC pattern

4

should be derived with model transformations from which the Java-based im-
plementations are finally generated. Considering this transformation chain, the
finally generated Java code defines the semantics of the SWM language.

The SWM language is defined as follows. A WebModel consists of two parts:
a DataLayer for modeling entities which should be persisted in the database,
and a HypertextLayer presenting the web pages of the application. An Entity

owns several Attributes (each having a SimpleType) and can be related to
several other entities. A Page is either a StaticPage having a static content or
a DynamicPage (IndexPage or DataPage) having a dynamic content depending
on a referenced entity type. An IndexPage lists objects of this entity whereas
a DataPage shows concrete information on a specific entity like its name, at-
tributes, and references. Finally, pages are connected by Links.

A prominent environment for textual modeling in Eclipse is Xtext [22] pro-
viding an exhaustive language infrastructure for the development of textual,
grammar-based DSMLs. Listing 1 shows an excerpt of the SWM Xtext gram-
mar2. This excerpt shows altogether three production rules, i.e. for Entity,
Attribute, and IndexPage elements. The language terminals are defined us-
ing inverted commas (like ’index page’). The additional information to derive
a meta model is given by assignments. The assignments representing attributes
and cross references are defined as single-valued assignments (= operator for
mandatory attributes like name; additional ? operator for the optionally refer-
enced entity) whereas the assignments representing containment references are
all defined to be multi-valued (+ operator is used in addition to the = operator).

Listing 1. Part of the constructive Xtext grammar of the SWM language

. . .
Ent ity : ’ ent i ty ’ name=ID ’{ ’

a t t r i b u t e s+=Attr ibute ∗
r e f e r e n c e s+=Reference ∗ ’} ’ ;

Att r ibute : ’ att ’ name=ID ’ : ’ type=SimpleType ;
. . .
IndexPage :

’ index page ’ name=ID (’ shows ent i ty ’ e n t i t y =[Entity]) ? ’ { ’
l i n k s+=Link∗ ’} ’ ;

. . .

4 Quality assurance for SWM models

In this section, we use the structured model quality assurance process presented
in Section 2 for textual models of the SWM language. First, we define concrete
quality assurance techniques for SWM. Then, we demonstrate how these tech-
niques are applied on a concrete SWM instance model. Finally, we show concrete
specifications using different specification languages.

2 The complete grammar can be found in Appendix A and is partially taken from [6].

5

4.1 Quality assurance techniques for SWM models

Since platform-specific models should be derived from SWM models and should
be used to generate the Java-based implementations, the major quality aspect to
be fulfilled on SWM models is Completeness. A model is complete if it contains
all relevant information, and if it is detailed enough according to the modeling
purpose [16]. This means for SWM models that (A) on the data layer each entity
must contain all relevant attributes and references to other entities whereas (B)
the hypertext layer must contain a complete set of (potentially linked) pages
which should be depicted within the web application. Potential SWM model
smells violating quality aspect Completeness are:

Empty Entity The entity does not have any attributes or references to other
entities. (This violates completeness issues of type A.)

No Dynamic Page The entity is not referenced by a dynamic page to be de-
picted in the web application. (type B)

Unused Entity The entity is referenced neither by a dynamic page nor by
another entity. (types A and B)

Missing Link The index page is not linked by the start page of the web appli-
cation. (type B)

Furthermore, several metrics can be used to analyze completeness of SWM
models. For example, metrics Number of Entities in the Model (NEM) and Num-
ber of Dynamic Pages in the Model (NDPM) can be used to get a first overview
on the model structure. Here, a ratio between the values of these metrics less
than 1 : 2 might be a hint for missing dynamic pages 3. Similarly, metrics Av-
erage number of Attributes (resp. References) in Entities of the Model (AvNAE
resp. AvNRE) are useful to detect missing information in the data layer.

After having specified appropriate model smells, suitable refactorings have
to be defined in order to support the handling of smelly SWM models. Smells
No Dynamic Page and Unused Entity can be eliminated by a refactoring which
inserts both an index page and a data page referencing the corresponding entity
to the hypertext model (refactoring Insert Dynamic Pages). For eliminating
smell Missing Link an appropriate refactoring Update Links to Index Pages

can be used that ensures that the start page owns links to all index pages of the
model. Finally, there is no adequate refactoring to eliminate smell Empty Entity.
Here, manual model changes should be performed.

4.2 Application of quality assurance techniques to SWM models

We now assume that the software company has to develop a web application
for the rental system of a vehicle rental company. Listing 2 shows a first SWM
model being developed in an early stage of the development process.

For the first overview on a model, a report on project-specific model metrics
might be helpful. Calculated metric values are presented in a specific view within
the Eclipse workbench. For reporting purposes, the results can be exported using

3 I.e., one entity should be referenced by both an index page and a data page.

6

several output formats (like PDF, HTML, or widely used MS Office formats)
and designs (like simple lists or tube diagrams). In our concrete example model,
metrics NEM and NDPM (see Section 4.1) are calculated to 4 and 3, respectively.
This means that there are more entities in the web model than dynamic pages
hinting to potentially missing dynamic pages.

Listing 2. Example SWM instance model before model review

webmodel VehicleRentalCompany {
data {

entity Customer {
att name : String
att emai l : Email
ref address : Address }

entity Address {
att s t r e e t : String
att c i t y : String }

entity Car {
att type : String }

entity Agency { } }
hypertext {

index page car index shows entity Car {
l ink to page cardata }

data page cardata shows entity Car { }
index page agencyindex shows entity Agency { }
stat ic page indexpage {

l ink to page car index
l ink to page agencyindex }

start page i s indexpage } }

To make this problems more explicit (and thus more obvious), EMF Refactor
supports analysis functionality with respect to so-called model smells represent-
ing model parts to be improved. As for model metrics, our tool environment
provides a configuration of specific model smells being relevant within the cur-
rent project. Similarly to the metrics calculation process, a smell analysis can be
triggered from an an element shown in the textual model editor. The results of
a smell analysis are presented in a specific view within the Eclipse workbench.
The bottom part of Figure 2 shows two entities being not referenced by a dy-
namic page (smell No Dynamic Page on entities Customer and Address) and
one occurrence of smells Empty Entity and Unused Entity each. After select-
ing a concrete smell occurrence in the tree-based view the involved element is
highlighted in the textual editor (see top part of Figure 2).

Besides manually changing the model, refactoring is the technique of choice
to eliminate occurring smells. In our example, we can use refactoring Insert
Dynamic Pages to eliminate smell No Dynamic Page on entity Customer4.

4 Note that we do not eliminate smell No Dynamic Page on entity Address since this
entity is referenced by entity Customer, i.e. it is part of this entity.

7

Fig. 2. Report of concrete smell occurrences in
our example SWM model and highlighting of in-
volved element in smell No Dynamic Page within
the textual Xtext editor

The refactoring is triggered
from the context menu of en-
tity Customer (see highlighted
part in Figure 2). Then, the
tool set provides two previews:
the first for visualizing model
changes performed by the refac-
toring, the second for a con-
crete overview on smell oc-
currence changes when apply-
ing the refactoring. The result
of refactoring Insert Dynamic
Pages is shown in Figure 3.
Two dynamic pages (an index
page and a data page) refer-
encing entity Customer are in-
serted into the hypertext layer
of the model. Furthermore, the
inserted data page is linked by
the index page which is in turn linked by the static page named indexpage being
the starting page of the hypertext layer (see Listing 2).

Fig. 3. Inserted and changed model elements after
applying refactoring Insert Dynamic Pages

Due to space limitations,
we have to skip further model
analysis and refactoring steps
here. However, we think that
the application of the qual-
ity assurance process and the
handling of the supporting
tools are sufficiently and plau-
sibly presented. For more de-
tailed discussions on process

and tooling we refer to [4]. An improved version of the example model concern-
ing quality aspect completeness can be found in Appendix B of this paper.

4.3 Specification of quality assurance techniques for SWM models

EMF Refactor provides a wizard-based specification process for quality assurance
techniques as well as basic code generation facilities. This has the advantage that
the designer can concentrate on the essential specification part only.

Listing 3. OCL specification of SWM smell No Dynamic Page

context WebModel
def : noDynamicPages () : Set (Ent ity) =

Entity . a l l I n s t a n c e s () −> exc lude sA l l
(DynamicPage . a l l I n s t a n c e s () −> c o l l e c t (e n t i t y))

8

OCL has been proven to be well-suited to specify metrics. For example, metric
NEM is simply defined using OCL expression self.dataLayer -> size() on
context element WebModel. Listing 3 shows the OCL specification of SWM model
smell No Dynamic Pages. OCL operation noDynamicPages() returns the set of
entities being not referenced by any dynamic page (line 2): Starting from all
instances of type Entity within the web model (line 3), we exclude those which
are referenced by at least one dynamic page (line 4).

Fig. 4. Henshin rule specification for SWM refactoring Insert Dynamic Pages

For refactoring specification we use Java and the EMF model transformation
language Henshin [1, 13] combined with OCL expressions being used for pre-
condition checking (not shown here). Here, the use of a model transformation
language like Henshin for refactoring specifications is a straightforward task.
Figure 4 shows the Henshin rule specifying refactoring Insert Dynamic Pages.
It uses elements of the SWM meta model which is generated by the Xtext frame-
work. Nodes (and edges) tagged by 〈〈preserve〉〉 represent unchanged model el-
ements whereas those tagged by 〈〈create〉〉 represent new ones. In our example,
starting with the contextual element of type Entity (specified using node name
selectedEObject), both a new index page and a new data page referencing this
entity are created. Moreover, the inserted data page is linked by the index page
which is in turn linked by the starting page of the hypertext layer.

All the sources of the case study (code, models, quality assurance techniques,
etc.) can be found in the download section of the EMF Refactor web site [9].

5 Related Work

In this section, we give an overview on quality assurance tools within the EMF
world, especially in the field of textual modeling using Xtext. For a comprehen-
sive overview also considering quality assurance of UML models we refer to [4].

To the best of our knowledge, explicit tool support for metrics calculation on
EMF models is not yet available (besides the EMF Refactor tooling). The EMF
Query Framework [19] can be used to construct and execute query statements
to compute metrics and to check constraints. The configuration of queries in
suites as well as reports on query results in various forms are not provided. The
EMF Validation Framework [10] supports the construction and assurance of

9

well-formedness constraints for EMF models. To the best of our knowledge, the
functionalities of both frameworks are not integrated into textual Xtext editors.

The Epsilon language family [11] provides the Epsilon Validation Language
(EVL) to validate EMF-based models with respect to constraints that are, in
their simplest form, quite similar to OCL constraints. For reporting, EVL sup-
ports a specific validation view reporting the identified inconsistencies in a tex-
tual way. Suitable quick fixes are formulated in the Epsilon Object Language
(EOL) being the core language of Epsilon. It is therefore not specifically dedi-
cated to model refactoring. For this purpose, Epsilon provides the Epsilon Wiz-
ard Language (EWL) [14]. We compare our first refactoring prototype with EWL
in [3]. Again, to the best of our knowledge, functionalities provided by Epsilon
languages can not be used within textual Xtext editors in an integrated way.

In another approach, the authors propose the definition of EMF-based refac-
toring in a generic way [5]. However, they do not consider the comprehensive
specification of preconditions. Our experiences in refactoring specification show
that it is mainly the preconditions that cannot be defined generically.

Xtext has outstanding support for static model analysis and validation. Cus-
tom constraints and quick fixes can be defined to tackle errors and warnings
instantaneously. However, the main purpose of these constraints and quick fixes
is to address model consistency. They are not especially dedicated to quality
assurance in a common sense. Moreover, there is no support for custom con-
figurations of validation suites. Furthermore, Xtext provides basic refactoring
functionality for generic renaming of arbitrary model elements. Support for cus-
tom refactorings (for example, for custom DSMLs like SWM) is not provided.

6 Conclusion and Future Work

In this paper, we present a flexible tool set for quality assurance of textual models
within Eclipse. The tool set integrates a number of tools which are all built atop
EMF (Xtext, EMF Refactor, OCL/MDT, and Henshin). In a case study, we use
a DSML for defining a specific kind of web applications and concentrate on the
quality aspect completeness. We use model metrics and model smells for static
analysis and model refactoring for improving the structure of the models.

The implementation shows that (1) the structured model quality assurance
process presented in [2] can be also adapted to textual models and that (2) the
tool set presented in [4] is flexible enough to be integrated in textual model
editors provided by Xtext. Here, EMF Refactor’s code generation facilities pro-
vide the designer to concentrate on the essential specification parts only. More-
over, the case study shows that Eclipse is particularly valuable for implementing
model quality assurance tools. On the one hand, the plugin technology provides
a flexible choice of concrete specification languages. On the other hand, the use
of the abstract syntax (provided by EMF) for implementing quality assurance
techniques provides a flexible use for visual and textual models in Eclipse.

Future work on the topic presented in this paper is separated into two di-
rections. On the one hand, we want to integrate further specification languages

10

into the EMF Refactor infrastructure. Here, we are currently working on the
integration of EMF Query. On the other hand, it would be useful to provide a
suite of predefined metrics, smells, and refactorings for specific Xtext grammars
in order to analyze and improve the structure of the corresponding language.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and tools for In-Place EMF Model Transformation. In: MoDELS 2010.
pp. 121–135. LNCS, Springer (2010)

2. Arendt, T., Kranz, S., Mantz, F., Regnat, N., Taentzer, G.: Towards Syntactical
Model Quality Assurance in Industrial Software Development: Process Definition
and Tool Support. In: Software Engineering. LNI, vol. 183, pp. 63–74. GI (2011)

3. Arendt, T., Mantz, F., Schneider, L., Taentzer, G.: Model Refactoring in Eclipse
by LTK, EWL, and EMF Refactor: A Case Study. In: Model-Driven Software
Evolution, Workshop Models and Evolution (2009)

4. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the
Eclipse Modeling Framework. Journal on Automated Software Engineering 20,
141–184 (2013)

5. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F., Jo-
hannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele,
M., Wende, C., Wilke, C.: DropsBox: the Dresden Open Software Toolbox. Soft-
ware & Systems Modeling pp. 1–37 (2012)

6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Synthesis Lectures on Software Engineering, Morgan & Claypool (2012)

7. Eclipse. http://www.eclipse.org/
8. Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/
9. EMF Refactor. http://www.eclipse.org/emf-refactor/

10. EMF Validation Framework. http://www.eclipse.org/modeling/emf/?project=validation
11. Epsilon. http://www.eclipse.org/epsilon/
12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software . Addison-Wesley, Boston, MA, USA (1995)
13. Henshin. http://www.eclipse.org/henshin/
14. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update Transformations in

the Small with the Epsilon Wizard Language. Journal of Object Technology 6(9),
53–69 (2007)

15. Model Development Tools (MDT). http://www.eclipse.org/modeling/mdt/
16. Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and Approaches to Model Qual-

ity in Model-Based Software Development – A Review of Literature. Information
and Software Technology 51(12), 1646–1669 (2009)

17. OMG: Object Constraint Language (OCL). http://www.omg.org/spec/OCL/2.3.1/
18. OMG: Unified Modeling Language (UML), http://www.uml.org
19. EMF Query. http://www.eclipse.org/projects/project.php?id=modeling.emf.query
20. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd Edition. Addison Wesley (2008)
21. Willink, E.D.: Modeling the OCL Standard Library. ECEASST 44 (2011)
22. Xtext. http://www.eclipse.org/Xtext

11

A Complete Xtext grammar of the SWM language

grammar org . e c l i p s e . emf . r e f a c t o r . examples . SimpleWebModel
with org . e c l i p s e . xtext . common . Terminals

generate simpleWebModel ” http ://www. e c l i p s e . org /SWM/1.0 ”

WebModel : ’ webmodel ’ name=ID ’{ ’
dataLayer=DataLayer
hypertextLayer=HypertextLayer

’} ’ ;
DataLayer : ’ data { ’ {DataLayer}

e n t i t i e s+=Entity ∗
’} ’ ;

Ent ity : ’ ent i ty ’ name=ID ’{ ’
a t t r i b u t e s+=Attr ibute ∗
r e f e r e n c e s+=Reference ∗

’} ’ ;
Att r ibute : ’ att ’ name=ID ’ : ’ type=SimpleType

;
enum SimpleType : Boolean | Email | I n t e g e r | St r ing

;
Reference : ’ r e f ’ name=ID ’ : ’ type =[Entity]

;
HypertextLayer : ’ hypertext { ’

pages+=Page+
’ s t a r t page i s ’ s tar tPage =[Stat i cPage]

’} ’ ;
Page : Stat i cPage | DynamicPage

;
Stat i cPage : ’ s t a t i c page ’ name=ID ’{ ’

l i n k s+=Link∗
’} ’ ;

Link : ’ l i n k to page ’ t a r g e t =[Page]
;

DynamicPage : IndexPage | DataPage
;

IndexPage :
’ index page ’ name=ID (’ shows ent i ty ’ e n t i t y =[Entity]) ? ’ { ’
l i n k s+=Link∗
’} ’ ;

DataPage :
’ data page ’ name=ID (’ shows ent i ty ’ e n t i t y =[Entity]) ? ’{ ’
l i n k s+=Link∗
’} ’ ;

Listing 4. Complete Xtext grammar of the SWM language

12

B Example SWM instance of model Vehicle Rental
Company (after model review)

webmodel VehicleRentalCompany {
data {

entity Customer {
att name : String
att emai l : Email
ref address : Address
ref account : BankAccount }

entity Address {
att s t r e e t : String
att postalCode : I n t e g e r
att c i t y : String }

entity BankAccount {
att number : I n t e g e r
att bankCode : String
att bankName : String }

entity Car {
att manufacturer : String
att type : String
att power : I n t e g e r }

entity Agency {
ref address : Address }

}
hypertext {

index page car index shows entity Car {
l ink to page cardata }

data page cardata shows entity Car { }
index page agencyindex shows entity Agency {

l ink to page agencydata }
data page agencydata shows entity Agency { }
index page customerindex shows entity Customer {

l ink to page customerdata }
data page customerdata shows entity Customer { }
stat ic page indexpage {

l ink to page agencyindex
l ink to page car index
l ink to page customerindex }

start page i s indexpage
}

}

Listing 5. Example SWM instance of model Vehicle Rental Company (after model
review)

