
OCL Pattern Matching

Tony Clark1

Middlesex University, London, UK

Abstract. This paper proposes an extension to OCL that addresses a
concern regarding the proliferation of navigation expressions that oc-
cur when expressing predicates over objects. Declarative patterns are
introduced that can be used to match against object structures so that
repeated variables reduce the need for lengthy repeated navigation ex-
pressions. Patterns provide the basis for a further contribution that shows
how objects can be used as functions.

1 Introduction

OCL is a formal language that can be used to express both system invariants and
pre and post conditions on system operations. The language is abstract in the
sense that it hides away the details of the representation of relationships and by
providing collections with associated operations such as union and includes.
Constraints on the state of objects in a system can be defined by applying
predicates to path expressions. A path expression navigates from a given instance
using ‘.’ to index object properties and association role ends.

Navigation via path expressions occurs frequently in OCL expressions. Typi-
cally, a constraint on an object o will involve a predicate p and two or more path
expressions o.a.b.c and o.i.j.k such that p(o.a.b.c,o.i.j.k) is required
to hold true. A specification of an invariant or a pre/post condition will require
multiple constraints to hold simultaneously. Such a proliferation of constraints
involving path expressions can lead to very verbose specifications as noted in
[13] (although the author proposes a very different solution to that proposed
here). OCL can greatly facilitate the use of models as described in [2] whose
authors also note that novices require more training than usual in the use and
comprehension of OCL constraints.

Programming languages such as ML [12], Racket [14] and Haskell [6] have
addressed the problem of verbose path expressions by providing patterns. A
pattern is a way of expressing multiple path expressions in a single declarative
expression and the OCL Manifesto mentions functional programming languages
as part of its motivation [3]. Patterns denote values in a given language; in the
case of OCL, patterns denote atomic values, collections and objects. Patterns
also contain variables that denote any value of an appropriate type. Therefore
patterns denote sets of values, such that any value in the set matches the pattern
given a collection of variable bindings. The process of taking a value from the
set and constructing the associated set of variable bindings is called pattern
matching.

This paper proposes an extension to OCL that allows patterns to be used
in constraints. The extension involves two new language constructs: a case-
expression that dispatches on a value given a collection of patterns, and an

(a) Basic Trees (b) Trees With Properties

Fig. 1. Binary Trees

object-expression that is used to construct instances of classes. Together these
new constructs allow OCL context declarations to be used in new ways. In
particular, a special case is identified that allows UML classes to be viewed as
properties and functions. The language is similar to the MT language [15] where
the patterns are restricted to model transformations.

2 Motivation

Consider the model shown in figure 1(a)1. A binary tree is either a leaf containing
an integer value or a pair of trees labelled left and right.

Suppose that we want to identify ordered binary trees where the leaf values
increase left to right. One way to do this is to define an Ordered property that
holds for a sub-set of trees. A property can be defined as a class that associates
0 or more classes with a class whose instances have the property.

Figure 1(b) shows the class Ordered associated with class Tree that defines
the ordered property on trees. The ordered property uses two auxiliary selection-
properties: Largest and Smallest. The essential idea is that a tree is ordered
when all of its sub-trees are ordered and a binary-pair of trees is ordered when
the largest element on the left is less or equal to the smallest element on the
right.

The OCL specification of ordered trees is shown in figure 2. The specification
exhibits features that are typical of using OCL to define properties in this way:
navigation: The specification of Ordered and Largest both exhibit multiple
navigation expressions that are used to apply functions and predicates to values
in object slots. Given that the specification of ordered trees is relatively small
compared to real-world applications, specifications involving such expressions
can become complex and difficult to comprehend.
inheritance: Tree is an inductively defined data type: a tree is a leaf or the
binary combination of two trees. Such recursive definitions can be achieved us-
ing an abstract class Tree and concrete sub-classes Leaf and Bin. A property
definition is then defined in the context of the super-class using oclIsKindOf as
a way of selecting the appropriate sub-class.

1 Note that in diagrams by default: association ends have a multiplicity of 1 and are
named by the attached class (pluralised where necessary). No cycles are allowed.

context Ordered inv:
tree.oclIsKindOf(Leaf) or
(tree.oclIsKindOf(Bin) and

children ->includes(tree.left.ordered) and
children ->includes(tree.right.ordered) and
tree.left.largest.leaf.value <= tree.right.smallest.leaf.value)

context Largest inv:
tree.oclIsKindOf(Leaf) implies leaf=tree and
tree.oclIsKindOf(Bin) implies

children ->includes(tree.left.select) and
children ->includes(tree.right.select) and
tree.left.select.oclIsKindOf(Largest) and
tree.right.select.oclIsKindOf(Largest) and
leaf.value = tree.left.select.leaf.value.max(tree.right.select.leaf.value)

context Smallest inv:
-- similar to Largest

Fig. 2. Ordered Binary Trees

children: The structure of a property often follows the recursive structure of
the data-type it relates to. For example, a binary tree is ordered when the two
sub-trees are also ordered. Another example is that the largest element of two
binary trees is the maximum of the largest element of the two sub-trees. The
model in figure 1(a) shows that the property classes have self-associations called
children that facilitate the definition of the sympathetic recursion between the
property and the class it relates to.

3 Related Work

Pattern matching has been used in functional programming languages for many
years. Languages such as ML, Scheme and Haskell use pattern matching in terms
of case-analysis and are the basis for the proposal put forward in this paper. A
difference is that functional programming languages use algebraic data types
rather than classes and inheritance, however there is a straightforward transla-
tion from classes with inheritance to tagged elements in an algebraic data type.

Model transformation languages [1, 7] often use patterns to identify the parts
of a source model that are to be removed and replaced. For example QVT [9]
uses object patterns that are similar to the features proposed in this paper.
However, by integrating patterns at the OCL level, they can be used to achieve
a wide range of useful results including a reduction on the complexity of lengthy
navigation expressions, functions and relations. Some languages such as [4] use
an SQL-like syntax to match and transform models, however these approaches
do not support structural matching.

Graph-based transformation systems use patterns to select parts of a graph
and use results from algebra theory to provide a declarative approach to express
sharing constraints to be maintained or achieved by transformation rules. Like
QVT patterns, these are related to the ideas presented here, but specifically
target model transformation.

Other applications of pattern matching in model based engineering involves
the use of OCL-based patterns to measure model quality [5], however it appears
that the authors do not use structural matching, and that the patterns are
encoded using standard OCL. Patterns are described in terms of mining models
in [8] but the encode the patterns using standard QVT.

context (Ordered)[tree=t] inv:
case t {

(Leaf)[value=_] → true;
(Bin)[left=l;right=r] →

(Ordered)[tree=l] and (Ordered)[tree=r] and v1 <= v2
where (Leaf)[value=v1]=(Largest)[tree=l] and

(Leaf)[value=v2]=(Least)[tree=r]
}

Fig. 3. A Relational Property

4 Patterns, Relations, Functions

Our proposal is that extending OCL with patterns can make specifications more
concise and therefore easier to comprehend and analyse. Concretely, our proposi-
tion takes the form of two new types of OCL expression: case-expressions involv-
ing patterns, and object expressions that are used to represent class-instances.
Having introduced these features we can use them to extend context-definitions
to use patterns in relations and to introduce a new form of functional-definition.

Figure 3 shows the definition of a relational property called Ordered. The
body of the constraint is defined by case-analysis on the tree t. The use of case
analysis separates out the different sub-types in a structured way. Notice how
the recursive definition of Ordered follows the recursive structure of a binary
tree. This means that the reflexive Ordered::children association defined in
figure 1(b) is implicit in the definition.

Figure 3 shows the use of a case-expression. The basic form is case v { p
→ e; ... } where v and e are OCL expressions and p is a pattern. If the value
v matches a pattern p then the result of the case-expression is given by the
corresponding e.

Therefore, in figure 3 the relational property Ordered is specified by case
analysis on the tree t. A tree is either a leaf or a binary-tree. A leaf is always
ordered. A binary tree is ordered when the sub-trees l and r are ordered. Object-
expressions are used to specify the condition that the sub-trees are ordered:
when an object expression such as (Ordered)[tree=l] is used in a boolean
expression then the corresponding well-formedness constraint, defined using a
context-pattern definition, must hold.

The where-condition is used as a side-condition in figure 3 to require that
the greatest element of the left sub-tree is less than or equal to the least element
of the right sub-tree. Such a condition uses patterns to call an object-expression
used as a function call as described below.

context (Largest)[tree=t] fun:
case t {

(Leaf)[value=_] → t;
(Bin)[left=l;right=r] →

(Leaf)[value = v1.max(v2)]
where (Leaf)[value = (Largest)[tree=l]] and

(Leaf)[value = (Largest)[tree=r]]
}

Fig. 4. A Functional Property

(a) Extending OCLExpression (b) Pattern Abstract Syntax

Fig. 5. Extending OCL Abstract Syntax

Figure 4 shows the definition of the functional property Largest. Such a
definition is introduced using the standard context keyword, followed by an
object pattern and fun: that indicates the class that is to be viewed as a function.
The slots of the object-pattern define the fields and association ends that are
designated as arguments to the function. The single field/association-end that is
omitted defines the value that is to be viewed as the result of calling the function.

Again, notice how the children association is no longer required because
of the recursion in the definition. The function definition is tied to the class
Largest and therefore oclIsKindOf is no longer required, unlike the definition
of Largest in figure 2.

5 Extending the Standard

The OCL standard2 defines the language in terms of an abstract syntax, concrete
syntax and a semantics. The abstract syntax takes the form of a model that
describes how the class OCLExpression is used to attach constraints to UML
model elements. OCL patterns are defined as an extension to the standard. This
section defines patterns and object expressions as sub-classes of OCLExpression
and provides a concrete syntax as a BNF grammar.

Figure 5(a) shows OCLExpression from the standard extended with three
new types of expression: CaseExp; Where; ObjectExp. An object expression takes
the concrete form (C,i)[n=e; ...] where C is a reference to a class, i is an
optional object-identity, n is the name of a field or association-end, and e is
an expression. Therefore, (Point)[x=10;y=20] is a two-dimensional point. The
optional object-identities are used to specify that the same object occurs more
than once in an expression (and correspondingly in a pattern as described be-
low). Clearly, there are well-formedness constraints regarding the use of object-
identities, however we will omit such discussions here.

2 http://www.omg.org/spec/OCL/2.3.1/

Figure 5(b) shows the definition of patterns as used in case-expressions and
where-expressions. Patterns are used to denote OCL values (including objects)
and use variables to match arbitrary components of values. Note that the re-
peated use of the same variable must always denote the same OCL sub-value
when a pattern is matched against a value (modulo identities).

The ConstrainedPattern includes the use of a boolean valued OCLExpression
to add a guard to a pattern; this is a way of escaping from the restrictions of pat-
terns into arbitrary boolean expressions for example the pattern p and when
e requires that a given value v both matches the pattern p and satisfies the
arbitrary boolean expression e.

Fig. 6. Sequence Patterns

Patterns may denote collections and it is convenient to allow sequence-
patterns to be non-deterministic (via operations such as append and union)
so that they can be further constrained via guards as described above. Figure 6
defines the abstract syntax of collection patterns.

OCLExpression ::= ... as defined by the OCL standard ...
| CaseExp | ObjectExp | WhereExp

CaseExp ::= ’case ’ OCLExpression ’{’ CaseArm* ’}’
CaseArm ::= OCLPattern → OCLExpression
ObjectExp ::= ’(’ Class ’)’ ’[’ Slot* ’]’
Slot ::= Name ’=’ OCLExpression
WhereExp ::= OCLExpression ’where ’ OCLPattern
OCLPattern ::=

OCLPattern ’=’ OCLPattern
| OCLPattern ’when ’ OCLPattern
| LiteralExp
| CollectionPattern
| Var
| ’(’ Class ’)’ ’[’ SlotPattern ’]’
SlotPattern ::= Name ’=’ OCLPattern
CollectionPattern ::= ’Seq{’ OCLPattern* ’}’ | ’Set{’ OCLPAttern* ’}’

| OCLPattern ’->’ CollOp ’(’ OCLPattern* ’)’
CollOp ::= ’append ’ | ’prepend ’ | ’including ’ | ’union ’ | ’insertAt ’

Fig. 7. Concrete Syntax

Figure 7 proposes a concrete syntax for the pattern language. Notice how the
syntax of collection patterns follows that of the equivalent expressions.

Fig. 8. A Functional Language

context (Eval)[exp=e;env=p] fun:
case e {
(Var)[name=n] → (Lookup(env=p;name=n];
(Lambda)[arg=n;body=e] → (Closure)[arg=n;env=p;body=e];
(App)[op=o;arg=e] →
let v1:Value = (Eval)[exp=o;env=p]

v2:Value = (Eval)[exp=e;env=p]
in case v1 {

(Clo)[arg=n;env=p;body=e] →
let p:Env=(Bind)[name=n;value=v2;env=p] in (Eval)[exp=e;env=p]

}
}

context (Lookup)[env=p;name=n] fun:
case e {
(Empty)[] → undefined;
(Bind)[name=m;val=v;env=p] → if n=m then v else (Lookup)[env=p;name=n] endif

}

Fig. 9. Language Evaluation

6 A Language Evaluator

This section briefly shows how patterns can be used to specify a standard recur-
sive function. Figure 8 includes a model of the simple λ-calculus and defines two
properties Eval that maps an expression and an environment to a value, and
Lookup that maps an environment and a name to a value. Figure 9 uses patterns
to define the Eval and Lookup functions.

7 State and Collections

The previous sections have shown how patterns can be used to define functions
and relations over model elements. Even though the functions are used to define
evaluation, there is no implication that the specifications define how a system
evolves over time. This is because the patterns and associated functions and
relations are stateless.

(a) A Simple Library (b) Dynamic Execution

Fig. 10. A Model with State Changes and Collections

context (Filmstrip)[steps=S] inv:
case S {

Seq{} → true
P->prepend(s1)->prepend(s2)

where s1 = (Step)[before=l2; after=l3]
s2 = (Step)[before=l1; after=l2]

→ (Filmstrip)[steps=P]
}

Fig. 11. Specifying Execution

Models are often used to describe how a system evolves over time by showing
how, complete or partial, system states are modified in response to handling an
operation. Typically this is expressed using some form of state machine or process
model. When an operation is performed, OCL can be used to define conditions
on a before state, an after state and a relationship between the two. As with
invariants, these conditions often involve complex navigation expressions.

Our proposal is that a pattern based approach can be used to define system
execution in a succinct and declarative way making it easier to the user and
tools to appreciate and reason about state changes. To illustrate this we use a
simple model of a library shown in figure 10(a) consiting of readers, books and
borrowing records. We limit ourselves to the library operations that borrow and
return books.

The dynamic execution of a system can be expressed as a filmstrip that
consists of a collection of steps. Each step contains a before and after state of
the system. Each system operation is defined a special type of step. For simple
sequential systems, filmstrips are sequences of steps where the before state of
a step is the same as the after state of the immediately preceding step. For
filmstrips that contain concurrency, this condition is loosened appropriately.

Figure 10(b) extends the library model with a filmstrip where the concrete
steps are Borrow and Return. The general-purpose constraint that defines se-
quential behaviour is shown in figure 11. The invariant uses sequence patterns
to require that the steps are linked through the before and after states. In par-
ticular P->prepend(s1)->prepend(s2) matches any sequence with two or more
elements of the form Seq{s1,s2,...} where P is the sequence with s1 and s2
removed. Notice that the second case-arm is defined recursively and requires
that the filmstrip (Filmstrip)[steps=P] is well-formed.

context
(Borrow)[

book = bn;
reader = rn;
before =

(Lib ,l)[
books = Set{b=(Book)[name=bn]}->union(B);
readers = R=Set{r=(Reader)[name=rn]}->union(_);
borrowings = X

];
after =

(Lib ,l)[
books = B;
readers = R;
borrowings = X->including(x)

where x=(Borrowing)[book=b; reader=r])
]

] inv: true

Fig. 12. Borrowing

context
(Return)[

book = bn;
reader = rn;
before =

(Lib ,l)[
books = B;
readers = R=Set{r=(Reader)[name=rn]}->union(_);
borrowings = X->including(x)

where x = (Borrowing)[book=b; reader=r]
];

after =
(Lib ,l)[

books = B->including(b=(Book)[name=bn]);
readers = R;
borrowings = X

]
] inv: true

Fig. 13. Return

Each concrete step defines a library operation and, since these are defined
as classes, they are specified separately. Figure 12 shows the definition of the
step that specifies the Borrow operation. It is a useful example of the declara-
tive power achieved by extending OCL with patterns because the body of the
invariant form is essentially empty because all of the constraint is expressed as
structural relationships between context and inv:. Note that the identity of the
library object is declared to be l in both the before and the after which indicates
that the change occurs by side-effect. The Return operation is specified in figure
13.

8 Conclusion

This paper has proposed extensions to OCL that aim to address the proliferation
of navigation expressions that occur when expressing relationships between dif-
ferent parts of a model. Object expressions complete the range of values that can
be denoted by general OCL expressions. Object-identities can be used to express
the state changes that occur when a system performs an operation. Patterns are
used to denote UML values, they include variables and pattern matching is used

to bind variables in order that a pattern explicitly denotes a value. Patterns
are used in case-expressions and context-declarations in order to reduce the
number of navigation expressions and to introduce a new, functional, form of
declaration.

This paper has presented the OCL extensions in terms of examples and syn-
tax definitions. Further work is needed to define the semantics of patterns and to
integrate them with the semantics given in the standard. No analysis has been
presented of the changes to existing tools that are implied by the addition of
patterns, for example [10] examines the issues of efficient pattern matching and
[11] examines type checking patterns.

References

1. András Balogh and Dániel Varró. Advanced model transformation language con-
structs in the viatra2 framework. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 1280–1287. ACM, 2006.

2. Lionel C Briand, Yvan Labiche, HD Yan, and Massimiliano Di Penta. A controlled
experiment on the impact of the object constraint language in uml-based main-
tenance. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 380–389. IEEE, 2004.

3. Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer, and
Alan Wills. The amsterdam manifesto on ocl. In Object Modeling with the OCL,
pages 115–149. Springer, 2002.

4. Keith Duddy, Anna Gerber, Michael J Lawley, Kerry Raymond, and Jim Steel.
Declarative transformation for OO models. Transformation of Knowledge, Infor-
mation, and Data: Theory and Applications. Idea Group Publishing, 2004.

5. Twan van Enckevort. Refactoring uml models: using openarchitectureware to mea-
sure uml model quality and perform pattern matching on uml models with ocl
queries. In Proceedings of the 24th ACM SIGPLAN conference companion on Ob-
ject oriented programming systems languages and applications, OOPSLA ’09, pages
635–646, New York, NY, USA, 2009. ACM.

6. Paul Hudak and Joseph H Fasel. A gentle introduction to haskell. ACM Sigplan
Notices, 27(5):1–52, 1992.

7. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model
transformation tool. Science of Computer Programming, 72(1):31–39, 2008.

8. Jens Kübler and Thomas Goldschmidt. A pattern mining approach using QVT.
In Model Driven Architecture-Foundations and Applications. Springer, 2009.

9. Ivan Kurtev. State of the art of QVT: A model transformation language standard.
In Applications of Graph Transformations with Industrial Relevance, pages 377–
393. Springer, 2008.

10. Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In ACM
SIGPLAN Notices, volume 36, pages 26–37. ACM, 2001.

11. Neil Mitchell and Colin Runciman. A static checker for safe pattern matching in
haskell. Trends in Functional Programming, 6:15–30, 2005.

12. Lawrence C Paulson. ML for the Working Programmer. Cambridge University
Press, 1996.

13. Jörn Guy Süß. Sugar for ocl. In Proceedings of the 6th OCL Workshop at the
UML/-MoDELS Conference, pages 240–251, 2006.

14. Sam Tobin-Hochstadt. Extensible pattern matching in an extensible language.
arXiv preprint arXiv:1106.2578, 2011.

15. Laurence Tratt. The MT model transformation language. In Proceedings of the
2006 ACM symposium on Applied computing, pages 1296–1303. ACM, 2006.

